旧版    ENGLISH

其他

当前位置 : 首页>其他>学术活动

Analysis&PDE | Some recent progress on the mathematical analysis of the Prandtl boundary layer equation

编辑:wfy 时间:2019年10月21日 访问次数:200

报告题目:Some recent progress on the mathematical analysis of the Prandtl boundary layer equation

报告人:徐超江教授(南京航空航天大学)

时间:20191024日下午14:30-15:30

地点:99银河app玉泉校区工商楼200-9

摘要: In 1904, Prandtl said that, in fluid of small viscosity, the behavior of fluid near the boundary is completely different from that away from the boundary. Away from the boundary part can be almost considered as ideal fluid, but the near boundary part is deeply affected by the viscous force and is described by Prandtl boundary layer equation which was firstly derived formally by Prandtl. From the mathematical point of view, the well-posedness and justification of the Prandtl boundary layer theory don’t have satisfactory theory yet. In this talk, we present some recent progress on the mathematical analysis of the Prandtl boundary layer equation. By using energy method, we study the well-posedness of Cauchy problem and the smoothness effect of solutions for Prandtl equations in Sobolev space.

报告人简介:徐超江,1982年毕业于武汉大学数学系,1986年获南巴黎大学理学博士学位,1990年获法国“科学研究指导者”文凭。徐超江教授是1994年首批国家杰出青年科学基金获得者、获国家有突出贡献中青年专家称号、获联合国教科文组织ICTP中心Atyah奖等。曾任武汉大学数学研究所所长、教授、博士生导师、法国鲁昂大学特级教授。他主要从事微局部分析的理论研究,所主持的工作“线性和非线性微局部分析”曾获1991年国家教委科技进步二等奖。

All are welcome!

联系人:张挺(zhangting79@zju.edu.cn)

99澳门银河